Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS Pathog ; 17(12): e1010113, 2021 12.
Article in English | MEDLINE | ID: covidwho-1553552

ABSTRACT

Emerging coronaviruses (CoVs) pose a severe threat to human and animal health worldwide. To identify host factors required for CoV infection, we used α-CoV transmissible gastroenteritis virus (TGEV) as a model for genome-scale CRISPR knockout (KO) screening. Transmembrane protein 41B (TMEM41B) was found to be a bona fide host factor involved in infection by CoV and three additional virus families. We found that TMEM41B is critical for the internalization and early-stage replication of TGEV. Notably, our results also showed that cells lacking TMEM41B are unable to form the double-membrane vesicles necessary for TGEV replication, indicating that TMEM41B contributes to the formation of CoV replication organelles. Lastly, our data from a mouse infection model showed that the KO of this factor can strongly inhibit viral infection and delay the progression of a CoV disease. Our study revealed that targeting TMEM41B is a highly promising approach for the development of broad-spectrum anti-viral therapeutics.


Subject(s)
CRISPR-Cas Systems , Gastroenteritis, Transmissible, of Swine/virology , Host-Pathogen Interactions , Membrane Proteins/physiology , Organelles/virology , Transmissible gastroenteritis virus/physiology , Virus Replication , Animals , Gastroenteritis, Transmissible, of Swine/genetics , Gastroenteritis, Transmissible, of Swine/transmission , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Swine
2.
Blood ; 138(4): 344-349, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1255893

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARS-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles. The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacologic inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of the SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the US Food and Drug Administration-approved functional inhibitors of ASMase may help treat hypercoagulability in patients with COVID-19.


Subject(s)
COVID-19/blood , Macrophages/virology , Membrane Proteins/physiology , SARS-CoV-2 , Sphingomyelin Phosphodiesterase/physiology , Spike Glycoprotein, Coronavirus/physiology , Thrombophilia/etiology , Thromboplastin/physiology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/complications , Cell-Derived Microparticles , Enzyme Activation , Humans , Hydrolysis , Macrophages/enzymology , Molecular Targeted Therapy , Plasmids , Protein Transport , RNA Interference , RNA, Small Interfering/genetics , Receptors, Virus/physiology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelins/physiology , Thrombophilia/blood , Thrombophilia/drug therapy , Thrombophilia/enzymology
3.
PLoS Pathog ; 17(5): e1009599, 2021 05.
Article in English | MEDLINE | ID: covidwho-1247668

ABSTRACT

Antiviral therapeutics are a front-line defense against virally induced diseases. Because viruses frequently mutate to escape direct inhibition of viral proteins, there is interest in targeting the host proteins that the virus must co-opt to complete its replication cycle. However, a detailed understanding of the interactions between the virus and the host cell is necessary in order to facilitate development of host-directed therapeutics. As a first step, we performed a genome-wide loss of function screen using the alphacoronavirus HCoV-229E to better define the interactions between coronaviruses and host factors. We report the identification and validation of an ER-resident host protein, TMEM41B, as an essential host factor for not only HCoV-229E but also genetically distinct coronaviruses including the pandemic betacoronavirus SARS-CoV-2. We show that the protein is required at an early, but post-receptor engagement, stage of the viral lifecycle. Further, mechanistic studies revealed that although the protein was not enriched at replication complexes, it likely contributes to viral replication complex formation via mobilization of cholesterol and other lipids to facilitate host membrane expansion and curvature. Continued study of TMEM41B and the development of approaches to prevent its function may lead to broad spectrum anti-coronavirus therapeutics.


Subject(s)
Coronavirus 229E, Human/drug effects , Host Microbial Interactions/physiology , Membrane Proteins/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Coronavirus 229E, Human/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Host Microbial Interactions/genetics , Humans , Membrane Proteins/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vero Cells , Virus Replication/drug effects
4.
Int J Mol Med ; 47(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1112802

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus­2 (SARS­CoV­2), the causative viral agent for the ongoing COVID­19 pandemic, enters its host cells primarily via the binding of the SARS­CoV­2 spike (S) proteins to the angiotensin­converting enzyme 2 (ACE2). A number of other cell entry mediators have also been identified, including neuropilin­1 (NRP1) and transmembrane protease serine 2 (TMPRSS2). More recently, it has been demonstrated that transmembrane protease serine 4 (TMPRSS4) along with TMPRSS2 activate the SARS­CoV­2 S proteins, and enhance the viral infection of human small intestinal enterocytes. To date, a systematic analysis of TMPRSS4 in health and disease is lacking. In the present study, using in silico tools, the gene expression and genetic alteration of TMPRSS4 were analysed across numerous tumours and compared to controls. The observations were also expanded to the level of the central nervous system (CNS). The findings revealed that TMPRSS4 was overexpressed in 11 types of cancer, including lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, thyroid carcinoma, ovarian cancer, cancer of the rectum, pancreatic cancer, colon and stomach adenocarcinoma, uterine carcinosarcoma and uterine corpus endometrial carcinoma, whilst it was significantly downregulated in kidney carcinomas, acute myeloid leukaemia, skin cutaneous melanoma and testicular germ cell tumours. Finally, a high TMPRSS4 expression was documented in the olfactory tubercle, paraolfactory gyrus and frontal operculum, all brain regions which are associated with the sense of smell and taste. Collectively, these data suggest that TMPRSS4 may play a role in COVID­19 symptomatology as another SARS­CoV­2 host cell entry mediator responsible for the tropism of this coronavirus both in the periphery and the CNS.


Subject(s)
COVID-19/enzymology , COVID-19/genetics , Membrane Proteins/genetics , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/genetics , Virus Internalization , Brain/enzymology , COVID-19/virology , Central Nervous System/enzymology , Computer Simulation , Databases, Genetic , Female , Gastrointestinal Tract/enzymology , Gene Expression Profiling , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Male , Membrane Proteins/physiology , Neoplasms/enzymology , Neoplasms/genetics , Pandemics , Serine Endopeptidases/physiology
5.
Thorax ; 76(1): 92-99, 2021 01.
Article in English | MEDLINE | ID: covidwho-978824

ABSTRACT

The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.


Subject(s)
Endoplasmic Reticulum Stress , Lung Diseases/metabolism , Membrane Proteins/physiology , Humans , Signal Transduction
6.
Mol Neurobiol ; 58(3): 1017-1023, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-880349

ABSTRACT

COVID-19, the global threat to humanity, shares etiological cofactors with multiple diseases including Alzheimer's disease (AD). Understanding the common links between COVID-19 and AD would harness strategizing therapeutic approaches against both. Considering the urgency of formulating COVID-19 medication, its AD association and manifestations have been reviewed here, putting emphasis on memory and learning disruption. COVID-19 and AD share common links with respect to angiotensin-converting enzyme 2 (ACE2) receptors and pro-inflammatory markers such as interleukin-1 (IL-1), IL-6, cytoskeleton-associated protein 4 (CKAP4), galectin-9 (GAL-9 or Gal-9), and APOE4 allele. Common etiological factors and common manifestations described in this review would aid in developing therapeutic strategies for both COVID-19 and AD and thus impact on eradicating the ongoing global threat. Thus, people suffering from COVID-19 or who have come round of it as well as people at risk of developing AD or already suffering from AD, would be benefitted.


Subject(s)
Alzheimer Disease/physiopathology , COVID-19/physiopathology , SARS-CoV-2/physiology , Acetylcholine/physiology , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/complications , Angiotensin-Converting Enzyme 2/physiology , Animals , Anosmia/etiology , Apolipoprotein E4/genetics , Brain/pathology , Brain/virology , COVID-19/complications , Cytokine Release Syndrome/etiology , Cytokines/physiology , Female , Galectins/physiology , Humans , Hypoxia/etiology , Interleukins/physiology , Male , Membrane Proteins/physiology , Mice , Receptors, Virus/physiology , Sex Factors , Smoking/adverse effects
7.
Int J Biol Sci ; 16(15): 3028-3036, 2020.
Article in English | MEDLINE | ID: covidwho-874840

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, with acute respiratory failure as the most significant symptom, has led to a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is considered as the most important receptor of SARS-CoV-2 and wildly expressed in human tissues. Whereas, the extremely low expression of ACE2 in lung could hardly interpret the severe symptom of pneumonia in COVID-19 patients. Here we profiled two SARS-CoV-2 infection related genes, the transmembrane serine protease 2 (TMPRSS2) and the interferon-inducible transmembrane protein 3 (IFITM3), in human tissues and organs. Consistent with the expression and distribution of ACE2, TMPRSS2 was also highly expressed in digestive, urinary and reproductive systems, but low expressed in lung. Notably, the anti-virus protein IFITM3 also expressed much lower in lung than other tissues, which might be related to the severe lung symptoms of COVID-19. In addition, the low expression of IFITM3 in immune cells suggested that SARS-CoV-2 might attack lymphocytes and induce the cytokine release syndrome (CRS). Furthermore, cancer patients were considered as more susceptible to SARS-CoV-2 infection. Our data supposed that fourteen types of tumors might have different susceptibility to the virus according to ACE2, TMPRSS2 and IFITM3 expression patterns. Interestingly the prognosis of six types of cancers including breast carcinoma (BRCA), lung adenocarcinoma (LUAD), uterine corpus endometrial carcinoma (UCEC), renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), and hepatocellular carcinoma (LIHC) were closely related to these gene expressions. Our study explored the expression and distribution profiles of two potential novel molecules that might participate in SARS-CoV-2 infection and involved in immunity, which may provide a functional basis for preventing infection of SARS-CoV-2.


Subject(s)
Gene Expression Regulation, Neoplastic , Membrane Proteins/physiology , Neoplasms/metabolism , RNA-Binding Proteins/physiology , Receptors, Virus/physiology , Serine Endopeptidases/physiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , DNA Mutational Analysis , Gene Expression Regulation , Healthy Volunteers , Humans , Membrane Proteins/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Prognosis , RNA-Binding Proteins/genetics , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL